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Using a method of Siegel and the q-derivation, we compute explicitly the Pade� �
Hermite approximants of a system of functions connected with the q-logarithm
Lq(x)=� xn�(qn&1). � 1997 Academic Press

1. INTRODUCTION

The purpose of this paper is to compute explicitly a part of the table of
the Pade� �Hermite approximants of a system of functions connected with
the q-logarithmic series:

Lo(x)= :
+�

n=0

q&1
qn+1&1

xn+1. (1)

By the Pade� �Hermite approximants of a system of formal series
f1(x), f2(x), ..., fm(x) with coefficients in an arbitrary commutative field K,
we mean a family of m polynomials P1 , P2 , ..., Pm of respective degrees
\1 , \2 , ..., \m such that:

:
m

i=1

Pi (x) fi (x)=x\+m&1R(x) (2)

with \=�m
i=1 \i and R(x) # K[[x]].

Such approximants are very useful to prove linear independence results
over Q in number theory. They were called Pade� -approximants of type I by
Mahler [11], who succeeded in computing them for a wide class of func-
tions in the case K=C by means of the residue theorem. In a series of
papers dating back to 1964 [10], Jager enlarged the algebraic part of
Mahler's work and gave the complete Pade� �Hermite table for the two
following systems of functions:
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(a) The binomial function system: for i=1, 2, ..., m, fi (x)=(1&x)|i,
with |i&|j � Z if i{j.

(b) The exponential function system: for i=1, 2, ..., m, fi (x)=
exp(|i x), |i {|j if i{j.

For \1�\2� } } } �\m , Jager also provided the Pade� �Hermite
approximants of the logarithmic function system: fi (x)=Logm&i (1&x) for
i=1, 2, ..., m.

More recently, Borwein in [1] used the same method to compute
the ordinary Pade� table (m=2, f1(x)=1) of complex functions satisfying
Poincare� -type equations:

f (qx)=(ax+b) f (x)+cx+d. (3)

As a striking application, Borwein proved the irrationality of
�+�

n=1 (1�(qn+r)), q # Z, |q|�2, r # Q* (see [2] and [3]).
It is not difficult to see that the residue theorem allows, in fact, the

explicit computation of the Pade� �Hermite table for any system
fi (x) = f (|ix), when |1 = 0, |i�wj { q p ( p # Z) if i > j > 0, and
\1�max(\2 , ..., \m), if f satisfies a Poincare� -type equation like (3). One
only has to consider the complex integral:

R(x)=
1

2i? |
C

f (tx)
t\1 >m

k=2 >\k&1
&=0 (t&|k q&)

dt, (4)

where C is a positive contour enclosing all the simple poles |k q& of the
integrand, as well as zero.

Another method to compute explicitly the Pade� �Hermite table of the
exponential system was introduced by Siegel [12, Chap. 1]; see also
[13, Chap. 2]. Differentiating (1) \1 -times, he succeeded in obtaining
a recurrence relation over m, thus computing the Pi 's and R(x) (as a
multiple integral).

The same method was used later by Wallisser in the case of the ordinary
Pade� table of the q-exponential function [14] (Wallisser replaced the
ordinary derivation by the q-derivation), and also by Huttner [9] in
the case f1(x)=1; f2(x)=Log(1&x) : f3(x)=�+�

n=1 (xn�n2) (dilogarithmic
function).

In this paper, we will use Siegel's method, together with the q-derivation,
to compute the diagonal (\i=\j for every i, j) of the Pade� �Hermite table
of the system [1, Li (:jx) : i=0, 1, ..., k ; j=1, 2, ..., N], where:

Lk(x)= :
+�

n=0
\k+n

k + q&1
qn+1&1

xn+1. (5)

81PADE� �HERMITE APPROXIMANTS



File: 640J 300903 . By:CV . Date:19:12:96 . Time:10:50 LOP8M. V8.0. Page 01:01
Codes: 2197 Signs: 1127 . Length: 45 pic 0 pts, 190 mm

It is readily seen that every series of the form

f (x)= :
+�

n=1

P(n)
xn+1

qn+1&1
, (6)

where P is a polynomial, is a linear combination of the Lk 's. This holds,
in particular, for the (ordinary) derivatives of the q-logarithmic function,
and for the eighth power of the %3 Jacobi's function as well, because

\ :
+�

&�

q&n2+
8

=1+16 :
+�

n=1

n3

1&(&q)n [8, p. 315].

Our main result is Theorem 1; it will be proved in Section 3. Section 2
is devoted to technical preliminaries. In Section 4, we will study the case
K=C and give the expression of R(x) in (2) as a complex integral similar
to (4).

2. THE SERIES Lk(x)

(a) Let K be a commutative field, char(K)=0. Let q # K*, with
qn{1, \n # N&[0].

We denote by $q the q-derivation in K[[x]], the ring of the formal series
with coefficients in K; if f (x)=�+�

n=0 an xn, we put

$q f (x)= :
+�

n=1

an
qn&1
q&1

xn&1. (7)

The q-derivation is a classical special case [6] of the U-derivation
([4, 5].

It is easy to verify that:

$q f (x)=
f (qx)& f (x)

x(q&1)
. (8)

Leibniz's rule for the q-derivation may be written:

$n
q( fg)(x)= :

n

k=0 \
n
k+q

$n&k
q f (qkx) $k

q g(x). (9)

In (9) the q-binomial coefficients are defined by

\n
k+q

=
nq !

kq !(n&k)q !
, (10)
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with

{nq!= `
n

m=1

qm&1
q&1

when n�1.

0q!=1.

Cauchy's q-binomial theorem [6, 7] asserts that:

`
n

i=1

(1&xqi)= :
n

p=0

(&1) p \n
p+q

q p( p+1)�2x p. (12)

(b) Let f (x)=�+�
n=0 anxn # K[[x]]. We put

|
x

0
f (t) dqt= :

+�

n=0

an
q&1

qn+1&1
xn+1. (13)

The properties of the q-integrals are well-known [6, 7] and easy to
prove. We will use two of them:

The formula of q-integration by parts:

|
x

0
($q f (t)) g(t) dqt=[( fg)(t)]x

0&|
x

0
f (qt) $qg(t) dq t. (14)

The change of variable t=au:

|
x

0
f (t) dqt=a |

a&1x

0
f (au) dqu. (15)

(c) Now let f # K[t][[x]] be a formal series whose coefficients are
polynomials in t. If f (t, x)=�+�

n=0 Pn(t) xn, we put:

|
1

0
f (t, x) dqt= :

+�

n=0
\|

1

0
Pn(t) dq t+ xn. (16)

Lemma 1 (q-Taylor's Formula with Integral Remainder). Let H0(x, u)=1
and Hn(x, u)=>n

k=1 (x&qku) for n�1. Then, \n # N :

f (x)= :
n

k=0

$k
q f (0)
kq !

xk+|
x

0

Hn(x, u)
nq !

$n+1
q f (u) dqu.

Proof. The formula is clearly true for n=0. Suppose it is true for n&1,
and put:

Gn(x, u)=(x&u)(x&qu) } } } (x&qn&1u).
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We have Hn(x, u)=Gn(x, qu), and an easy computation shows that

$qGn(x, u)=&
qn&1
q&1

Hn&1(x, u),

Using the formula of q-integration by parts, we obtain for n�1:

|
x

0

Hn(x, u)
nq !

$n+1
q f (u) dqu=|

x

0

Gn(x, qu)
nq !

$n+1
q f (u) dqu

=_Gn(x, u)
nq !

$n
q f (u)&

x

0

+|
x

0

qn&1
q&1

Hn&1(x, u)
nq !

$n
q f (u) dqu

=&
xn

nq !
$n

q f (0)+|
x

0

Hn&1(x, u)
(n&1)q !

$n
q f (u) dqu.

Thus Lemma 1 is proved by induction.

Lemma 2. Let F # K[x], satisfying:

(i) $n+1
q F(x)= f (x).

(ii) $k
qF(0)=0 for k=0, 1, ..., n.

Then F(x)=(xn+1�nq !) �1
0 (1&qt)(1&q2t) } } } (1&qnt) f (tx) dq t.

Proof. This is Lemma 1, where f is replaced by F. We also performed
the change of variable u=xt.

(d) We put, for k # N:

Lk(x)=|
x

0

dqt
(1&t)k+1=(q&1) :

+�

n=0
\k+n

k + xn+1

qn+1&1
. (17)

Lemma 3. \& # N:

Lk(q&x)=Lk(x)+(q&1) :
&&1

`=0

q`x
(1&q`x)k+1.

Proof. We have:

$q Lk(x)=
1

(1&x)k+1=
Lk(qx)&Lk(x)

x(q&1)
by (8).
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Thus,

Lk(qx)=Lk(x)+x(q&1)
1

(1&x)k+1 . (18)

Lemma 3 follows from (18) by an easy induction.

Lemma 4. \j # N&[0]:

$ j
q Lk(x)=

Hjk(x)
((1&x)(1&qx) } } } (1&q j&1x))k+1 , (19)

with Hjk(x) # K[x], deg Hjk�k( j&1).

Proof. Equation (19) is true for j=1: in this case Hj1=1. Suppose (19)
is true for j, and compute:

$ j+1
q Lk(x)=

1
x(q&1) \

Hjk(qx)
(> j

i=1 (1&qix))k+1&
Hjk(x)

(> j&1
i=0 (1&qix))k+1+

=
1

x(q&1)
Hjk(qx)(1&x)k+1&Hjk(x)(1&q jx)k+1

(> j
i=0 (1&qix))k+1

It is easy to see that (1�x(q&1))(Hjk(qx)(1&x)k+1&Hjk(x) (1&q jx)k+1)
is a polynomial Hj+1, k(x), with:

deg Hj+1, k�k+1+deg Hjk&1�k+1+k( j&1)&1.

Lemma 4 is proved by induction.

Lemma 5. Let :1 , :2 , ..., :N # K*, and let k # N. Let G=[qn : n # Z].
Then 1 and the Li (:mx) (0�i�k; 1�m�N) are linearly dependent over

the field K(x) of the rational fractions with coefficients in K if, and only if,
there exist two positive integers m and +, m{+, such that :m:&1

+ # G.

Proof. If there exist m and +, m{+, such that :m:&1
+ # G, then

Li (:mx), Li (:+x), and 1 are linearly dependent over K(x) by Lemma 3.
Conversely, suppose that

:
N

m=1

:
k

i=0

Pi, m(x) Li (:mx)+Q(x)=0,

where Pi, m , Q # K[x], with :m:&1
+ � G if m{+.
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Then the formal series

h(x)= :
N

m=1

:
k

i=0

Pi, m(x) Li (:mx)= :
+�

n=0

hn xn

satisfies hn=0 when n is large enough.
Suppose that at least one of the Pi, m $s is not zero; put d=

Max(deg Pi, m), d�0. It is readily verified, by using the definition of Lk(x),
that

hn=
un

(qn&1)(qn&1&1) } } } (qn&d&1)
(n�d ),

where un is a linear recurring sequence, of the form

un= :
d

n=0

:
N

m=1

Qr, m(n)(qr:m)n,

with Qr, m # K[x].
Choose (i0 , m0) such that Pi0, m0

{0, with i0 maximum. Then Qd, m0
has

exact degree i0 , therefore Qd, m0
{0. As all the qr:m 's are different, we have

un {0 when n is large enough, and the Proof of Lemma 5 is complete.

3. EXPLICIT COMPUTATION OF PADE� �HERMITE
APPROXIMANTS BY SIEGEL'S METHOD

Let :1 , :2 , ..., :N be N elements of K*, such that :m:&1
+ � G for m{+

(see Lemma 5).
Let n be an integer.
We want to compute polynomials Pl, +, n(x) and Qn(x), and a formal

series Rn(x), such that deg Pl, +, n�n, deg Qn�n, and

:
N

+=1

:
k

l=0

Pl, +, n(x) Ll(:+x)+Qn(x)=x(n+1) N(k+1)+nRn(x). (20)

Equation (20) can be seen as a homogeneous system of (n+1) N(k+1)
equations with (n+1) N(k+1)+n+1 unknowns (the coefficients of Qn

and the Pl, +, n 's). Thus (20) admits a nontrivial solution.
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First, we show how to compute Rn(x) by using Siegel's method. We
q-derive (20) n+1 times. Using Leibniz's rule (9), we get:

:
N

+=1

:
k

l=0

:
n+1

j=0
\n+1

j +q
: j

+($ j
qLl)(:+x)($n+1& j

q Pl, +, n)(q jx)

=x(n+1) N(k+1)&1Sn(x), with Sn(x) # K[[x]].

We observe that $n+1
q Pl, +, n=0 and that $n+1& j

q Pl, +, n is a polynomial
of degree � j&1 for 1� j�n+1.

We multiply both sides of the above equality by:

`
N

m=1

`
n

&=0

(1&q&:mx)k+1.

We obtain:

:
N

+=1

:
k

l=0

:
n+1

j=1 \
n+1

j +q
: j

+($n+1& j
q Pl, +, n)(q jx)($ j

q Ll)(:+x)

_ `
N

m=1

`
n

&=0

(1&q&:m x)k+1=x (n+1) N(k+1)&1Tn(x),

Tn(x) # K[[x]]. (21)

Now we use Lemma 4: ($ j
q Ll)(:+x) >N

m=1 >n
&=0 (1&q&:mx)k+1 is a

polynomial of degree less than:

N(n+1)(k+1)& j(l+1)+l ( j&1)=N(n+1)(k+1)& j&l.

Therefore, the left-hand side of (21) is a polynomial of degree less than:

Max
l

( j&1+N(n+1)(k+1)& j&l)=N(n+1)(k+1)&1.

But the right-hand side of (21) is a formal series vanishing at zero with
order greater than or equal to N(n+1)(k+1)&1. Thus we obtain
Tn(x)=cn # K. By Lemma 5, we have cn {0. As we can multiply (20) by
any arbitrary constant, we choose cn=nq !, and we get

\ `
n

&=0

`
N

+=1

(1&q&:+x)+
k+1

$n+1
q (x (n+1) N(k+1)+nRn(x))

=nq ! x(n+1) N(k+1)&1.
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Now by Lemma 2, we obtain

Rn(x)=|
1

0

>n
i=1 (1&qit) t(n+1) N(k+1)&1

>n
&=0 [>N

+=1 (1&q&:+tx)]k+1 dq t. (22)

In order to get explicit formulas for Pl, +, n(x) and Qn(x) we start from:

Wn(x)=x(n+1) N(k+1)+nRn(x).

Using Cauchy's q-binomial formula (12), we get

Wn(x)=x(n+1) N(k+1)+n :
n

p=0

(&1) p \n
p+q

q p( p+1)�2

_|
1

0

t(n+1) N(k+1)+ p&1

>n
&=0 [>N

+=1 (1&q&:+tx)]k+1 dqt

Wn(x)= :
n

p=0

(&1) p \n
p+q

q p( p+1)�2 xn& p+1

_|
1

0

(tx)(n+1) N(k+1)+ p&1

>n
&=0 [>N

+=1 (1&q&:+tx)]k+1 dqt

We define the polynomials Qn, N, k, p and the numbers A(&, +, l, p) by the
partial fraction expansion:

z(n+1) N(k+1)+ p&1

>n
&=0 [>N

+=1 (1&zq&:+)]k+1

=Qn, N, k, p(z)+ :
n

&=0

:
N

+=1

:
k

l=0

A(&, +, l, p)
(1&zq&:+)l+1. (23)

We now obtain:

Wn(x)= :
n

p=0

(&1) p \n
p+q

q p( p+1)�2xn& p+1_\|
1

0
Qn, N, k, p(tx) dqt

+ :
n

&=0

:
N

+=1

:
k

l=0

A(&, +, l, p) |
1

0

dqt
(1&txq&:+)l+1+ .

The change of variable u=tx in the q-integrals leads to:

Wn(x)= :
n

p=0

(&1) p \n
p+q

q p( p+1)�2xn& p

_\|
x

0
Qn, N, k, p(u) dq u+ :

n

&=0

:
N

+=1

:
k

l=0

A(&, +, l, p) Ll(q
&:+x)+ .
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We observe that �x
0 Qn, N, k, p(u) dqu is a polynomial Un, N, k, p(x).

Moreover, by Lemma 3, we have:

Wn(x)= :
n

p=0

(&1) p \n
p+q

q p( p+1)�2xn& p

_\Un, N, k, p(x)+ :
n

&=0

:
N

+=1

:
k

l=0

A(&, +, l, p)

_\Ll(:+x)+(q&1) :
&&1

`=0

q`:+x
(1&q`:+x)l+1++ .

But the series 1 and Ll(:+x) are linearly independent over K(x) by
Lemma 5.

If we go back to the expression of Wn(x) in (20), we then see that
Pl, +, n(x) is exactly the factor of Ll(:+x) in the above equality. Thus we
have proved

Theorem 1. For every n # N&[0], we have

:
N

+=1

:
k

l=0

Pl, +, n(x) Ll(:+x)+Qn(x)=x(n+1) N(k+1)+nRn(x),

where

Rn(x)=|
1

0

>n
i=1 (1&qit) t (n+1) N(k+1)&1

>n
&=0 [>N

+=1 (1&q&:+tx)]k+1 dq t.

Pl, +, n(x)= :
n

p=0

:
n

+=0

(&1) p \n
p+q

q p( p+1)�2A(&, +, l, p) xn& p,

the A(&, +, l, p) being defined in (23).

4. THE CASE K=C

If K=C, it is not difficult to transform the expression of Rn(x) in
Theorem 1 into a complex integral.

Suppose |q|<1.
If f is any continuous function on [0, 1], it is well known [6, Chap. 2;

7, Chap. 1] that:

|
1

0
f (t) dqt=(1&q) :

+�

n=0

qnf (qn). (25)
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Suppose now that f is analytic in D=[ |z|<1�|q|], and let C be any
positive contour included in D and enclosing all the numbers qn, n # N. If
we use the residue theorem, we immediately obtain:

|
1

0
f (t) dqt=

1&q
2i? |

C

f (z) :
+�

n=0

qn

z&qn dz. (26)

Thus, if |x|<|q&n| Min|:&1
+ | and |q|<1:

Rn(x)=
1&q
2i? |

C

>n
&=1(1&qiz) z(n+1) N(k+1)&1

>n
&=0 [>N

+=1 (1&q&:+zx)]k+1 :
+�

n=0

qn

z&qn dz.

We can obtain a similar expression if |q|>1 if we use (see [5,
Theorem 7]):

|
1

0
f (t) dqt=(q&1) :

+�

n=0

1
qn+1 f \ 1

qn+1+ . (28)

If C is any positive contour enclosing the q&n, n # N, and if
|x|<|q&n| Min|:&1

+ | and |q|>1, we get:

Rn(x)=
q&1
2i? |

C

>n
i=1(1&qiz) z(n+1) N(k+1)&1

>n
&=0 [>N

+=1 (1&q&:+zx)]k+1 :
+�

n=0

1
qn+1z&1

dz. (29)
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