JOURNAL OF APPROXIMATION THEORY 88, 80-91 (1997)
ARTICLE NO. AT963009

Explicit Computation of Padé—Hermite Approximants
Daniel Duverney

Equipe de Théorie des Nombres et d’Algébre, Université des Sciences et Techniques de Lille,
U.F.R. de Mathématiques, Bdtiment M2, 59655 Villeneuve d’Ascq, France

Communicated by P. Borwein

Received October 19, 1994; accepted in revised form January 2, 1996

Using a method of Siegel and the g-derivation, we compute explicitly the Padé—
Hermite approximants of a system of functions connected with the g-logarithm
L(x)=Xx"/(q"—1). © 1997 Academic Press

1. INTRODUCTION

The purpose of this paper is to compute explicitly a part of the table of
the Padé-Hermite approximants of a system of functions connected with
the g-logarithmic series:

+ o
g—1
LO(X)= Z mx +1.

n=0

(1)

By the Padé-Hermite approximants of a system of formal series
f1(x), f5(x), ..., f,.(x) with coefficients in an arbitrary commutative field K,
we mean a family of m polynomials P,, P,, .., P,, of respective degrees
Pls P2y e Py SUch that:

m

Y Pi(x) filx)=x""""IR(x) (2)

i=1

with p=3>", p,and R(x)e K[[x]].

Such approximants are very useful to prove linear independence results
over @ in number theory. They were called Padé-approximants of type I by
Mabhler [11], who succeeded in computing them for a wide class of func-
tions in the case K=C by means of the residue theorem. In a series of
papers dating back to 1964 [10], Jager enlarged the algebraic part of
Mahler’s work and gave the complete Padé—Hermite table for the two
following systems of functions:
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(a) The binomial function system: for i=1,2, .., m, f;(x)=(1—x)“,
with o, —w; ¢ Z if i #}.

(b) The exponential function system: for i=1,2,...m, f,(x)=
exp(w;x), w; #w; if i #.

For p,<p,<---<p,,, Jager also provided the Padé-Hermite
approximants of the logarithmic function system: f;(x) = Log” (1 —x) for
i=1,2,..,m

More recently, Borwein in [1] used the same method to compute
the ordinary Padé table (m =2, fi(x)=1) of complex functions satisfying
Poincaré-type equations:

flgx)=(ax+b) f(x)+cx+d (3)

As a striking application, Borwein proved the irrationality of

A1 (1" +7)), qeZ, |q| =2, re@* (see [2] and [3]).

It is not difficult to see that the residue theorem allows, in fact, the
explicit computation of the Padé-Hermite table for any system
fi(x) = flw;x), when w,=0, w;,/w;,#q"” (peZ) if i>j>0, and
p=max(p,, .., p,), if f satisfies a Poincaré-type equation like (3). One
only has to consider the complex integral:

:LJ Sf(tx)
2in g t TIr_, T175, (1 —wiq”)

dr, (4)

where @ is a positive contour enclosing all the simple poles w,¢" of the
integrand, as well as zero.

Another method to compute explicitly the Padé-Hermite table of the
exponential system was introduced by Siegel [12, Chap. 1]; see also
[13, Chap. 2]. Differentiating (1) p,-times, he succeeded in obtaining
a recurrence relation over m, thus computing the P;’s and R(x) (as a
multiple integral).

The same method was used later by Wallisser in the case of the ordinary
Padé table of the g-exponential function [14] (Wallisser replaced the
ordinary derivation by the g¢-derivation), and also by Huttner [9] in
the case fi(x)=1; f5(x)=Log(l —x): f3(x) =3, (x"/n*) (dilogarithmic
function).

In this paper, we will use Siegel’s method, together with the g-derivation,
to compute the diagonal (p;=p; , for every i, j) of the Padé—Hermite table
of the system {1, L;(a;x):i=0,1,..,k;j=1,2,.., N}, where:

/k+n —1
-2 (V) )
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It is readily seen that every series of the form

flx)=13 P(”)ﬁa (6)

where P is a polynomial, is a linear combination of the L,’s. This holds,
in particular, for the (ordinary) derivatives of the g-logarithmic function,
and for the eighth power of the 0; Jacobi’s function as well, because

+ oo 5 8 + oo n3
q”> =1+16 —_— [8, p. 315].
(2 I
Our main result is Theorem 1; it will be proved in Section 3. Section 2
is devoted to technical preliminaries. In Section 4, we will study the case
K=C and give the expression of R(x) in (2) as a complex integral similar
to (4).

2. THE SERIES L,(x)

(a) Let K be a commutative field, char(K)=0. Let ¢ge K*, with
q"#1, VneN — {0}.
We denote by 6, the g-derivation in K[[x]], the ring of the formal series
with coefficients in K; if f(x)=> 7" a,x", we put

"]
=" 1, (7)

+ o
5, /0= ¥ @’ =

The g¢-derivation is a classical special case [6] of the U-derivation

([4, 5]
It is easy to verify that:

5. f L) =S )
! x(g—1)
Leibniz’s rule for the g-derivation may be written:
e = ¥ () 03 a0 of et ©)
k=0 q

In (9) the g-binomial coefficients are defined by

n nq!
<k>q:k (n—rk),!" (10)

q- q
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with

q"—1

when n>1.
q—1

n
n,l= l_[
m=1

0,1=1.

q
Cauchy’s g-binomial theorem [ 6, 7] asserts that:
[T (=)= 3 (=17 (1) oo (12)
i=1 p=0 q

(b) Let f(x)=>7""a,x"eK[[x]]. We put

x + o0 g—1 )
[ swd, =Y a,t5—xt. (13)
0 n=0 q 71

n =

The properties of the g-integrals are well-known [6, 7] and easy to
prove. We will use two of them:
The formula of g-integration by parts:

j: (0, /(1)) g(r) dyt =[(f&)(D)]5 — j: flano,g(nyd,e. (14)
The change of variable t = au:
[ s dqt=afm flau) d,u. (15)
0 0

(c) Now let fe K[t][[x]] be a formal series whose coefficients are
polynomials in ¢ If f(z, x) => "% P,(t) x", we put:

+ oo

jlf(z, X)dji=Y Ol P,,(t)dqz> o (16)
0 0

n=0

LEmMMA 1 (g-Taylor's Formula with Integral Remainder). Let Hy(x, u) =1
and H,(x,u)=T11}_, (x—q"u) for n>1. Then, Vne N:

CSS0) L HE )
Sl = XS | TR0 ) dy

Proof. The formula is clearly true for n =0. Suppose it is true for n —1,
and put:

n—1

G, (x,u)=(x—u)(x—qu)---(x—q" " 'u).
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We have H,(x, u) =G,(x, qu), and an easy computation shows that

5q Gn(xa u) =

Using the formula of ¢g-integration by parts, we obtain for n> 1:

JXH”(X’ i out ! flu) d,,u=f\'M53“f(u) dgu
0 0

n,! n,!
G, (x,u . *
-| A g |
nq- 0
Yq"—1H, y(x,u) _, .
+f0 o R 5" flu) d,u
X", “~H, (x,u) .,
= 5qf(0)+f0 Wéqf(u) d,u.

Thus Lemma 1 is proved by induction.

LEMMA 2. Let Fe K[ x], satisfying:
(i) o5+ F(x)= f(x).
(i) 0“F(0)=0 for k=0,1,...n.
Then F(x)=(x""*"/n,") {5 (1 —qt)(1 —q°t)--- (1 —q"t) f(tx) d,t.

Proof. This is Lemma 1, where f is replaced by F. We also performed
the change of variable u = xt.

(d) We put, for ke N:

¥ d ! + oo k+n xn+1
L = —L—=(g—1 _ 1

k(x) '[0 (l_t)k+1 (q )nzo< k >qn+l_1 ( 7)

LEmMA 3. VveN:
v—1 qu
Li(q"x)=Ly(x)+ (¢ —1) (Z“OW.
Proof. We have:
1 L. (gx)—L,(x)
3, Li(x) = QI T by (8).

T(=x)TT T x(g—1)
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Thus,
L) = L)+ x(g— 1) o, (18)
(1—-x)
Lemma 3 follows from (18) by an easy induction.
LEmmA 4. VjeN—{0}:
5 Lulx) = Hal®) (19)

(1=x)(1—gx)--- (1 —g/x))k+ 1
with H,(x)e K[ x], deg H,; <k(j—1).

Proof. Equation (19) is true for j=1: in this case H; = 1. Suppose (19)
is true for j, and compute:

(Séﬂ Li(x)= 1 <( ij(qx) ij(x) >

x(g— D\, (1—¢gx)* ' (TT/Zs (1 —g'x))F+!
1 Hylgx)(1—x) 1 — Hy(x)(1 —g/x)*+!

T x(g—1) (IT7_o (1 —g'x))* !

It is easy to see that (1/x(q — 1))(Hy(gx)(1 —x)**' — H, (x) (1 —g/x)* ")
is a polynomial H;,  ,(x), with:

degH; <k+1+degH; —1<k+1+k(j—1)—1

J

Lemma 4 is proved by induction.

LEMMA 5. Let ay, 0y, ..., oy € K*, and let ke N. Let G={q":neZ}.

Then 1 and the L;(a,,x) (0<i<k; 1 <m<N) are linearly dependent over
the field K(x) of the rational fractions with coefficients in K if, and only if,
there exist two positive integers m and i, m # p, such that o0 ' €G.

m>pu

Proof. 1If there exist m and u, m+#u, such that oo, 'e@, then
L;(a,,x), L;(a,x), and 1 are linearly dependent over K(x) by Lemma 3.
Conversely, suppose that

Pi, m(x) Li(amx) + Q(X) =05

e
[0

11

where P, ,,, Q€ K[ x], with a0 ' ¢ G if m# p.
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Then the formal series

k + o
Z tm i((xmx): Z hnx”

||
H MZ

satisfies /1, =0 when 7 is large enough.

Suppose that at least one of the P,,'s is not zero; put d=
Max(deg P, ,,), d=0. It is readily verified, by using the definition of L,(x),
that

h

T =D =) (g )

where u,, is a linear recurring sequence, of the form

z

d
Z Z Qr m )(qr(xm)n,

n=0m=

with Q, ,, e K[x].

Choose (iy, m,) such that P, #0, with iy maximum. Then Q, ,,, has
exact degree i,, therefore Q, ,,, #0. As all the ¢'«,,’s are different, we have
u, #0 when n is large enough, and the Proof of Lemma 5 is complete.

3. EXPLICIT COMPUTATION OF PADE-HERMITE
APPROXIMANTS BY SIEGEL’S METHOD

Let oy, &y, ..., ay be N elements of K*, such that ocmoc/j1 ¢G for m#u
(see Lemma 5).

Let n be an integer.

We want to compute polynomials P, , ,(x) and Q,(x), and a formal
series R,(x), such that deg P, , ,<n, deg O, <n, and

k
ZP/M L(0,x)+ Q,(x)=x"+DNE+D=mR (x). (20)

||MZ

Equation (20) can be seen as a homogeneous system of (n+1) N(k+1)
equations with (n+1)N(k+1)+n+1 unknowns (the coefficients of Q,

and the P, , ,’s). Thus (20) admits a nontrivial solution.
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First, we show how to compute R,(x) by using Siegel’s method. We
g-derive (20) n+ 1 times. Using Leibniz’s rule (9), we get:

n+1

Nk N
T Yy ("j ) &S L, )03 P, ()

/=0 j=0

=xHDNE+D=1G (X)), with S, (x)eK[[x]].

We observe that 62*'P, , =0 and that §7"' /P
of degree < j—1 for 1<]<n+1
We multiply both sides of the above equality by:

/.u.n 18 @ polynomial

We obtain:
N +1 1 ) )
Y XY (") P a0 )

N n
X l_[ l_[ (1_qvamx)k+l=x(n+1)N(k+l)7lTn(x)’

T,(x)eK[[x]]. (21)

Now we use Lemma 4: (67L,) (o, x)TT)_ TTi_o(1—¢"x,x)"*" is a
polynomial of degree less than:

Nn+1)k+1)—j/+1)+4(j—1)=Nn+1)k+1)—j—/.
Therefore, the left-hand side of (21) is a polynomial of degree less than:

Max(j— 1+ Nn+ Dk +1) = j /) =N+ D)(k+ 1)~ 1.

But the right-hand side of (21) is a formal series vanishing at zero with
order greater than or equal to N(n+1)(k+1)—1. Thus we obtain
T,x)=c,eK By Lemma 5, we have ¢, #0. As we can multiply (20) by
any arbitrary constant, we choose ¢, =n,!, and we get

k+1
(1_qvaﬂx)> 5;+l(x(n+l)N(k+1)+an(x))

o |+ D) Nk +1)—1
=n,lx .
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Now by Lemma 2, we obtain
;1: (l_qit)t(n+l)N(k+l)fl
! R d,t. (22)

1
R, (x) = . ;
J‘O HV:O [H/]:/:] (l _q a‘ﬂtx)
In order to get explicit formulas for P, , (x) and Q,(x) we start from

(x) =x(n+l)N(k+l)+an(x).

Wn

Using Cauchy’s ¢-binomial formula (12), we get

n
=x(n+1)N(k+])+n Z (_1)1)<n> qp(p+1)/2
p q

p=0
frF D N+ 1)+ p—1

W.(x)

X —d,t
I T T (g7
W.(x)= Z (=1)” <’;> qp(P+1)/2x}7—p+l
= q
tx)HFDNE+D +p—1
(1) »

]k+l

1
X
L IT o [TT; -1 (1= ¢, tx)
We define the polynomials Q,, v . , and the numbers A(v, u, 7, p) by the

partial fraction expansion:

Z(n+l)N(k+l)+p71
T [TTY_ (1 —zq"x,) 1" !
A(v, 1, £,
(v, 1,7, p) 23)

n N k
:Qn,N,k,p(Z)—i_Z: Z Z W

We now obtain:

n 1
x)= z (—1)7 <Z> gPeE =y <L O, nox p(tx) d,t
= q

! d,t
+3 % T Al | ),

v=0u=1/=0

The change of variable u = tx in the g-integrals leads to:

”Cxx): (_J)p<n> qu+Uﬂxnfp
0 P/q

¥ n N k
X <J‘ Qn,N,k P d u—+ Z Z Z A(V, M, f, p) L/(qva,ux)>'
=0u=1,=0

0
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We observe that [§ O, v . ,(u) d,u is a polynomial U, y . ,(x).
Moreover, by Lemma 3, we have

= i (_1)11 <Z> qp(p+1)/2xn7p
p=0 q

n N k
X Un,N,k,p(x)J’_Z Z ZA(valuafap)

v=0u=1/=0

v—1 ¢
x <L/(oc#x)+(q— )y %))

(=0 (1 —qCO(#X)

But the series 1 and L,(«,x) are linearly independent over K(x) by
Lemma 5.

If we go back to the expression of W, (x) in (20), we then see that
P, . .(x) is exactly the factor of L, (a,x) in the above equality. Thus we
have proved

THEOREM 1. For every ne N — {0}, we have

k
Z P, X)L, x) + Q,(x) =x"+DNEEDEnR (),

HMZ

where
n (l—qll) t(n+l)N(k+1)71

1
_ i=1
R"(x)‘Jo T o [T, (1 —qa,0)]"

d,t.

=3 Y —w@ " 2 A (v, 1, £, p)
q

p=0pu=0

the A(v, u, £, p) being defined in (23).

4. THE CASE K=C

If K=C, it is not difficult to transform the expression of R,(x) in
Theorem 1 into a complex integral.

Suppose |¢] < 1.

If fis any continuous function on [0, 1], it is well known [6, Chap. 2;
7, Chap. 1] that:

[ rodi-a-9 % ¢ (25)
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Suppose now that f is analytic in D= {|z|<1/|q|}, and let € be any
positive contour included in D and enclosing all the numbers ¢”, ne N. If
we use the residue theorem, we immediately obtain:

jol f(t)d,1 2m j 1(2) ”dz. (26)

Thus, if [x| < |¢~"| Min|a, | and |¢| < 1:

l_q 1—[;7 (l_in)Z()1+1)N(k+1 —1 n

v=1

2in Jo TTN_o [TT 2 (1—¢ %ZX)]HIE

We can obtain a similar expression if |¢|>1 if we use (see [5,
Theorem 7]):

R,(x)=

Llf() [_(q_l)ngoq"lJflf( > (28)

If ¢ is any positive contour enclosing the ¢~ ", neN, and if
|x| <lg~"| Min|oe, ' | and |g| > 1, we get:
C]—l l—ll_l(l_qz)zrz+l N(k+1)— Z 1
2im Jo TT0_o [T, (1 CIOQLZX)]"+1 gtz -1

R,(x)= dz.  (29)
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